

CONCOURS PONTS 2025

Biarritz

AEROVAC COMPOSITES ONE

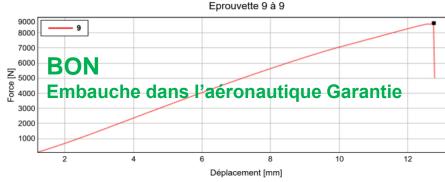
Test mécanique en directe Flexion 4 points jusqu'à rupture

Benjamin BOVO Directeur Général du groupe 3R industries

Test de la voiture

Voiture en Acier de 4,5kg

Exigence: Test statique 3s dans 3 zones du tablier



4 types de profil de comportement

ALMARES

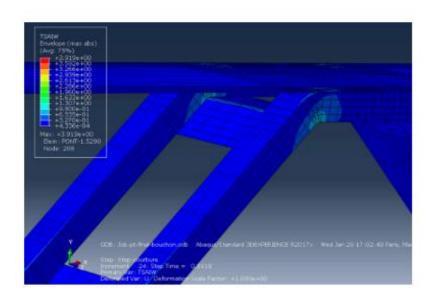
Gagnant	Année	Résistance (N/g)
IUT Saint Nazaire	2019 2014 2012 2010	122,1 Record de France 57,21 27,77 17,28
IUT Bordeaux	2015	87,54
Université Paul Sabatier - Toulouse	2021 2018 2017 2011	Prix du Jury 86,89 64,22 50,26
ISAE-ENSMA Poitiers	2024 2023 2021	49,1 50,1 31,7
Ecole Centrale de Nantes	2016 2013	49,22 57,81
Polytech' Orléans	2022 2009	48,4 22,37
IUT Le Havre	2019	Prix du Jury
Lycée Saint Exupéry Blagnac	2024 2023	Prix du Jury Prix du Jury
Strate Ecole de design Lyon	2022	Prix du Jury

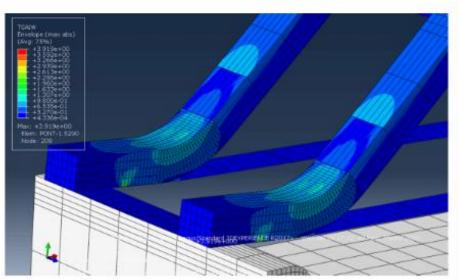
2025

Concours SAMPE France

Fabrication d'un pont composite

Fabrication





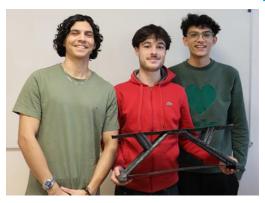
Simulation

Les chiffres

Nos efforts ont permis l'optimisation de la masse et de la résistance grâce à la modélisation numérique et aux essais expérimentaux 647 Masse (g)

Force (kN)

Performance visée (N/g)


04

Concours Pont Composites SAMPE

Journées Techniques SAMPE

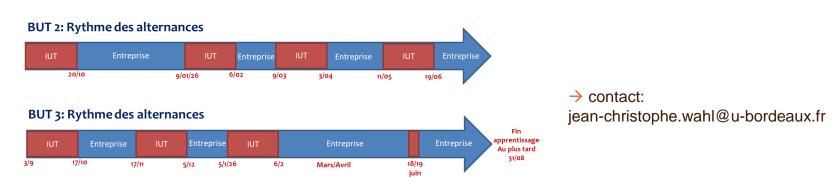
20 Novembre 2025 Biarritz / Casino

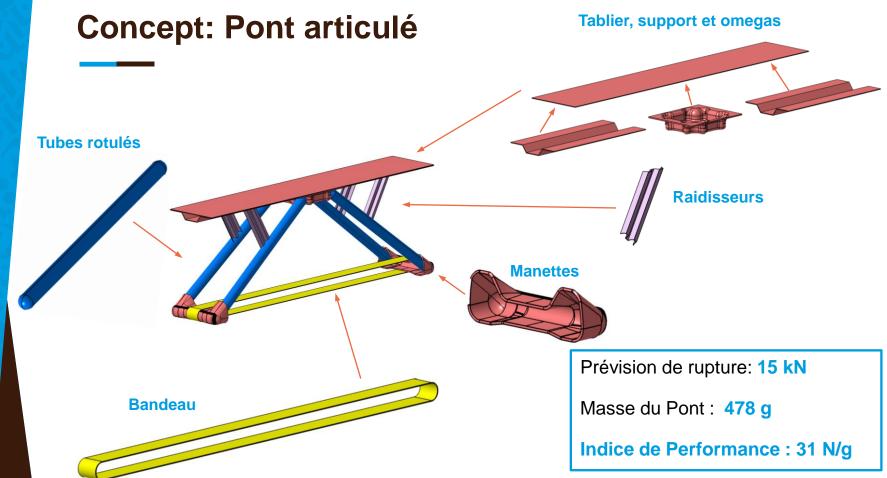
Equipe de l'IUT de Bordeaux Département Science et Génie de Matériaux Matériaux Composites

Ethan BOUKRIBA-TOURNIER
Samuel BRION
Octave CUISINIER-RAYNAL

Science et génie des matériaux

Composition de l'équipe

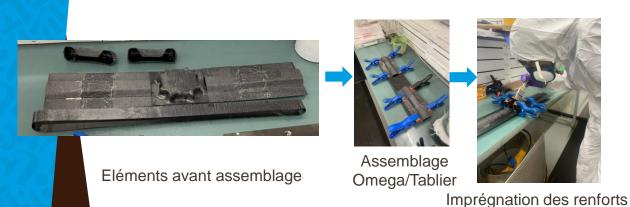

3 Etudiants de BUT -Bachelor Universitaire de Technologie « Science & Génie des Matériaux » 2023/2026


Ethan BOUKRIBA-TOURNIER Samuel BRION Octave CUISINIER-RAYNAL

Formation généraliste de technicien supérieur BAC+3 – Diplôme national

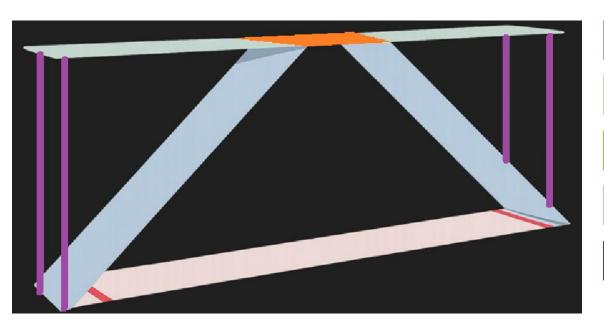
- Propriétés, Mise en œuvre et Conception des Métaux, Polymères, Céramiques et Composites
- Approfondissement Diplôme Universitaire spécifique à Bordeaux:
 Comportement des Structures et Matériaux Composites

Formation ouverte en apprentissage sur 1 ou 2 ans

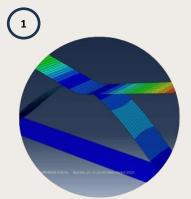


Mise en œuvre

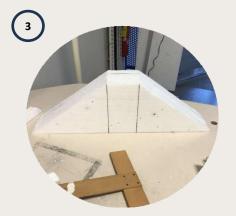
Organisation de la fabrication


Pont Trapèze à Piliers

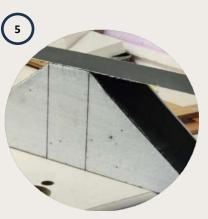
Présenté par : Arnault LECLERC – John THAI


2. DIMENSIONNEMENT

Nombre de plis :



Modélisation sur abaqus


Création du trapèze en polystyrène

Drapage des couches et moulage au contact


Trapèze fini

Dissolution de la mousse avec de l'acétone

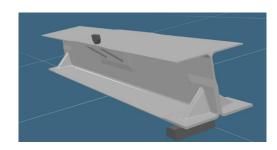
Assemblage des deux parties par collage avec la résine

4 piliers realise sous forme de tresses résinées avec des mèches de carbone issues du tissu pour la reprise de charge

Assemblage des piliers sur le pont avec de la résine

4. CARACTÉRISTIQUES DU PONT RÉALISÉ

Masse totale réelle = 495 g


Résistance théorique spécifique = 33,27 N/g Résistance théorique = 16 468 N

Pont I

CHAOU Luis: Apprenti SIDEL

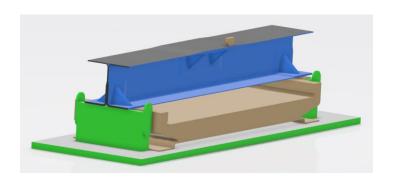
ANDRE Lény: Apprenti RENAULT Cléon

PERROT Alexi: Apprenti FLEXIFrance

RAAS Maxence: Apprenti LEGRAND

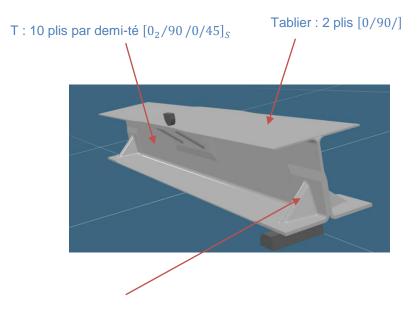
Principe du Pont I

Amélioration du pont d'il y a 1 an : (équerre rajoutée sur les points d'appuies)


Rupture au cisaillement d'une équerre de renfort puis perforation du tablier

- reconception du pont
- utilisation du même outillage pour les demi-l

CONCEPTION

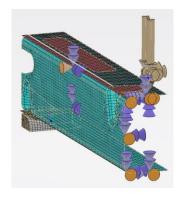

Structure du pont Pont en situation

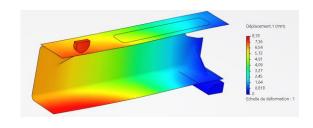
- Poutre centrale en I
- Equerre au droit des roues et des points d'appuies

Drapabilité des plis du tablier orienté à 0 degré

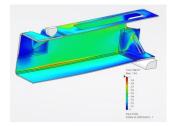
Masse calculée : 647g, Masse

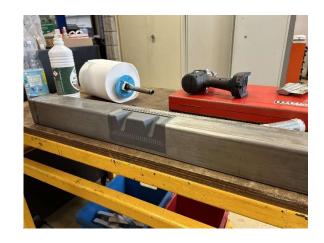
mesurée: 737g


6 Equerres : 20 plis [0/45/90/0/90/-45/0/45/0/-45/0]_s


Architecture du pont

SIMULATION: Force estimée 11 578N






Maillage du quart de pont et vérification des épaisseurs locales

Déformation du pont pour un déplacement imposé de 20 mm

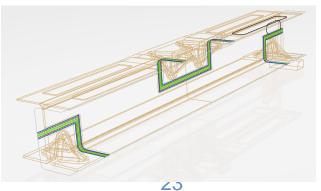
critère "Tsai-wu" pour un déplacement de 20mm.

Outillage:

Matériaux utilisés:

- -Acier
- -PLA: Acide Polylactique

RÉALISATION



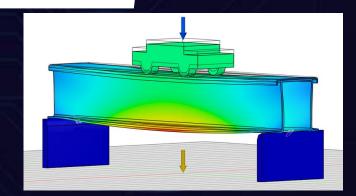
Principe de moulage du tablier

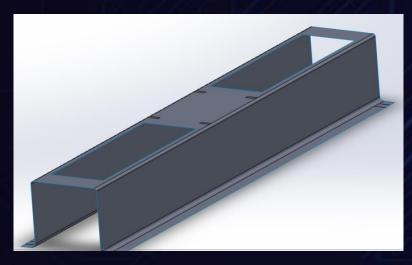
Moulage du tablier

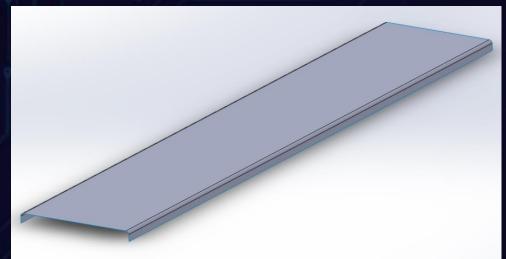
Positionnement des couches sur Catia

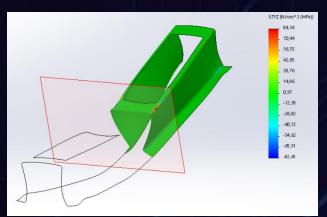
L'AÉRONAUTIQUE APLIQUÉE À UN PONT

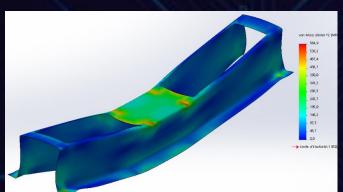
SAPIN--SEYVE Paul
MALLET Axel
ZIANI Khalid





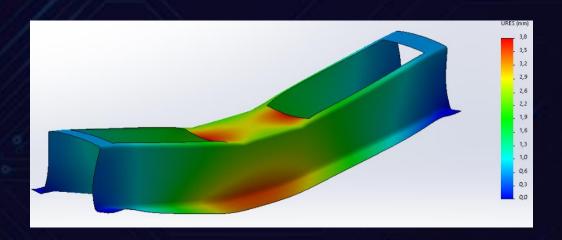



Lisse Ω 17 couches en symétrie 0°,45°,90°,-45°,0°,45°,90°,-45°,0°



Tablier 5 couches 0°,90°,0°,90°,0°

SIMULATION



Prévision de rupture : 3000N Masse du pont : 740g

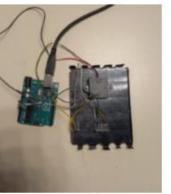
Indice de performance: 4N/g

RÉALISATION

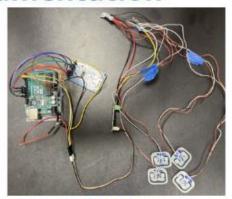
Pont instrumenté concours SAMPE

Le pont 2025, inspiré de De Vinci

Réalisé par 12 étudiants de 2ème année de Mesures Physiques


Record 2019: 122 Newtons/gramme

Pas de compétition, nous sommes déjà les meilleurs!

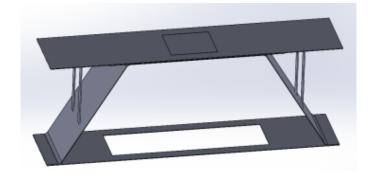

Partie instrumentation

Vibration

Température

Masse

Déformation



CONCOURSPONT COMPOSITES

Projet présenté par : Kaoutar Id-el-mouden, Manal Moufakkir, Nicole Singa

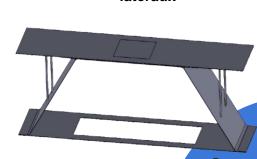
Etudiantes alternantes en dernière année à l'ISPA Spécialité Matériaux composites et Plasturgie

Encadrants: Mr. Bilel MILED, Mr. Bruno ROUSIER

Edition 2025

Conception et simulation

Objectifs:

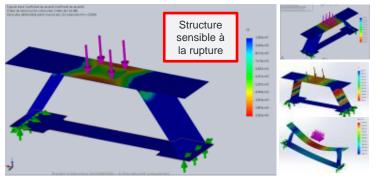

- Optimiser le rapport résistance/masse du pont
- Simplifier la structure pour limiter les zones de collage fragiles
- Respecter la géométrie imposée (609,6 × 101,6 mm) et la masse < 750 g

Déplacement max : 28,9 mm Contrainte max : 308 MPa Coeff. de sécurité : 2,06 (Critère Tsai-Wu)

Optimisation de la zone la + sujette à la rupture par ajout de piliers de renforts latéraux

Divers design

Difficulté de mise en œuvre


→ Transmission réduite des efforts

Nombre de composant

Structure simplifiée Angle à 60°

Poids non optimisé et une faible résistance mécanique Passer à 55° et retrait de matière pour alléger le poids

Analyse du critère de Tsaï-Wu

Simulation SolidWorks

Matériau: Carbone/époxy UD $(E_1 = 135 \text{ GPa}, \rho = 1550 \text{ kg/m}^3)$

Proposition 1

Proposition 2

moule

1. Découpe des plis - Fibre de carbone

Fabrication

Tablier Haut

4 plis [0/0/0/0]

4 plis [45/0/0/-45]

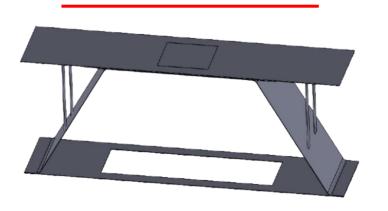
Trapèze + Pattes

8 plis

[+45 / 0 / 0/ -45 //-45 / 0/ 0 / 45]

10 plis

[0/0/0/+45/0/0/-45/0/0/0]

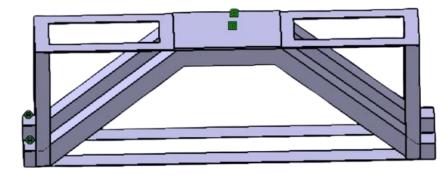


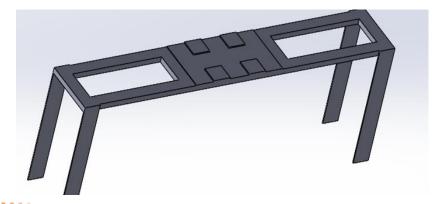
4. Moulage sous vide

5. Démoulage et Assemblage du pont

Bilan Prévisonnel

Paramètre	Valeur prévisionnelle
Masse	671 g
Effort estimé	~ 8253.3 N
Résistance estimée	~ 12.3 N/g



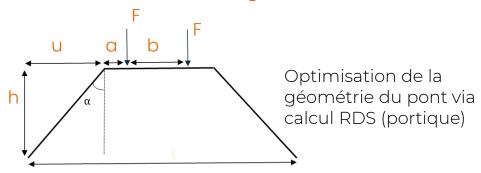

Concours pont SAMPE: 2025 Biarritz

Etudiants: LE LOC'H LAMBERT - CHOMBART - BRUN
Encadrant: Sylvain CORVELEYN
Partenaire: Philippe PARAT
(AEROVAC)

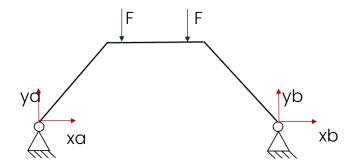
Choix de conception :

Forme générale:

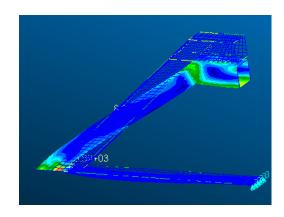
- 2 arches identiques pour gérer les flux d'efforts
- 1 tablier pour répartir les efforts sur les arches
- Renforts verticaux pour assurer le passage de la voiture en statique

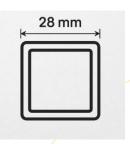

<u>Conception du tablier :</u>

- 1 structure principale
- 1 sur épaisseur centrale
- Renforts "pyramide" sous les roues

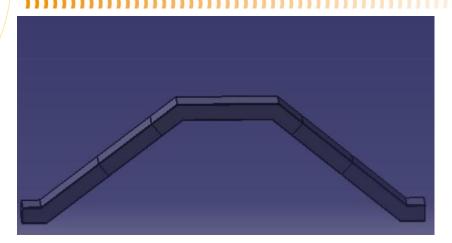

Dimensionnement et calculs structurels :

Dimensionnement de la géométrie 2d :


Cas de chargement :


Les résultats :

ya = yb = F
$$xa = -xb = \frac{F\left(\frac{u^2}{3\sin(\alpha)} + a(2u-a) + b(u+a)\right)}{\left(\frac{u}{\tan(\alpha)}\right)\left(\frac{2u}{3\sin(\alpha)} + l\right)}$$


Modelisation elements finis:

Choix de section:

Fabrication:

- Assemblage de 2 U préformés
- Noyau soluble

111111

 Infusion de résine sous vide en 1 shot

Résultats attendus:

- Masse arches: 612g

- Tablier: 126g

- Masse totale: 738g

- Force maxi: 28 000 N

- Résistance spécifique : 38 N/g

Notre établissement

Concours « Pont Composite » SAMPE France

Élèves chargés du projet :

Messieurs HEMMERT Nicolas & MULLER William

Équipe académique :

Monsieur FIRUS Sébastien (Professeur)

Monsieur BUMB Brandon (Technicien)

Plateforme Composites

Équipe du sponsor d'accueil:

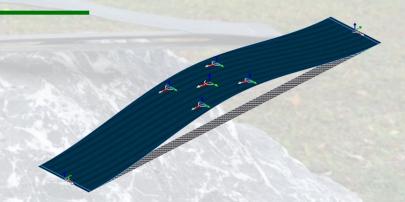
Monsieur KIEFFER Benjamin (Technicien

composite)

Monsieur MAYER Étienne (Responsable d'activité)

Monsieur BOCK Grégory (Technicien composite) 1/5

CAO & Choix techniques


- Création d'un CDC à partir de critères critiques
- Observation des ponts des précédentes éditions

Pont Prototype 1 conforme aux 10 critères version 2022 modif23_09 - William MULLER									
	Critère	Valeur	Unité	Valeur avec marge de sécurité 5%	Valeur réelle	Validation			
	Masse	<750	gramme	712,5	344	Oui			
	Longeur totale	>610	millimètre	640,5	640,5	Oui			
	Largeur totale	>102	millimètre	107,1	111	Oui			
10	Tablier continue non ajouré	1	1	/	1	Oui			
critères	Largeur tablier	>89	millimètre	93,45	111	Oui			
	Tirant d'air sur le tablier	>77	millimètre	80,85	Infini	Oui			
critiques	Variation altitude tablier	<50	millimètre	47,5	50,8	Oui			
	Hauteur totale	<228	millimètre	216,6	53,5	Oui			
	Ouverture pour le passage du vérin	1	1	1	1	Oui			
	Géométrie du pont valide sous les appuies	1	1	/	1	Oui			

- Utilisation de Solidworks licence universitaire
- Modélisation volumique et surfacique

- Orientation des fibres (90 % à 0°, 10 % à 90°)
- Sélection de l'évidement de la base par itération de prototype

Mise en œuvre du composite

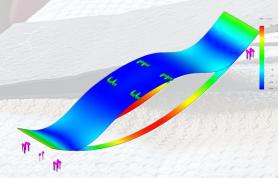
Découpe du renfort dans le rouleau de tissu carbone

- Mélange et débullage de la résine sous vide
- Préparation du sac à vide avec le matériel des sponsors

Stratification et mise sous vide



Simulation & résultats attendus



- Modélisation des couches composites :
 - nombre de plis : 18
 - épaisseur 0,185mm / plis
 - matériau renseigné orthotrope

Implantation des surfaces d'appui de l'essai de flexion

Simulation du comportement du pont

Tableau récapitulatif des résultats attendus

Masse	g	535
Contrainte	Pa	6,50 E+07
Déformation	mm	4,50 E-04
Déplacement	/	1,80 E+00
Effort admissible	N	18 000
Résistance spécifique	N/g	33,64

Fin de notre présentation

Merci de votre attention!

Nos sincères remerciements:

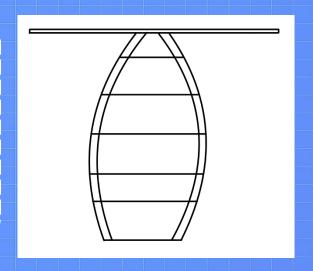
Aux organisateurs SAMPE pour cette superbe expérience;

Aux sponsors de l'évènement pour la fourniture du matériel;

Aux employés de l'Institut de Soudure de Saint-Avold pour leur implication.

Voyons le résultat!

PONT GMA



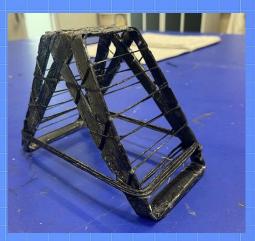
□ Idée

- > Fibres dans la direction de l'effort
- Continuité maximale sur les arches

□ Concept

 Stabiliser la flexion induite par la forme de la structure par des arches courbées renforcées de fibres

PONT GMA

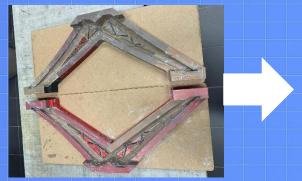

Prototypag

- Bons résultats
- > Rupture des câbles en tension
- > Zones d'interface du tablier intactes
- > Mise en lumière des difficultés de fabrication.

Masse: 59 g

Résistance: 3500 N

Rapport résistance masse : 59.3 N/g


Prototype sans tablier

PONT GMA

Fabrication

Impression des moules

Drapage des arches

Assemblage des arches

Strap et finition

Masse du pont : 480 g Charge maximale prévue : 24 kN

Résistance N/g:50

Le Pont Napoléon

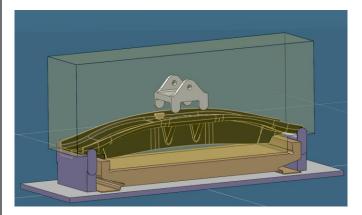
Masse: 735 g

Tenue spécifique: 25

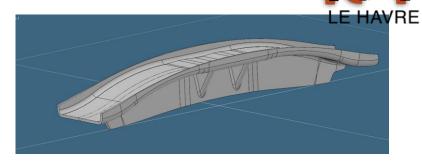
N/g

<u>Changement du pont de l'année</u> <u>dernière :</u>

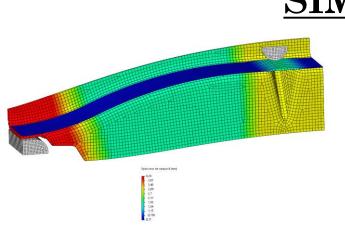
La Sandalette

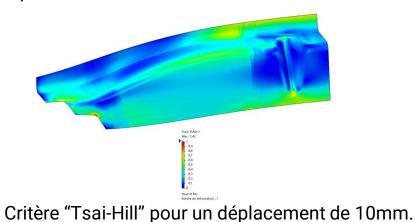

Le Napoléon

- Refonte totale du pont car la sandalette était décevante
- Pont en 2 parties symétriques que l'on est venu coller
- Ajout de 4 équerres centrales afin de mieux supporter les efforts


CONCEPTION:

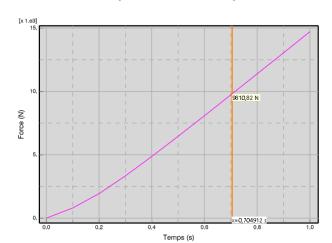
Outillage en impression 3D inséré dans le pain de mousse


Pont en situation


Architecture du pont


23 plis de carbones dans les zones les plus importantes contre 10 dans les zones moins soumises à l'effort

	Séquence	Matériau	Rosette	C1	C5	C3	C2	C4
1	Seq.1	G947_CR122	Rosette.2	0	0	0	0	0
2	Seq.2	G947_CR122	Rosette.2	45	45	45	45	45
3	Seq.3	G947_CR122	Rosette.2					
4	Seq.4	G947_CR122	Rosette.2	-45	-45	-45		
5	Seq.5	G947_CR122	Rosette.2	0	0	0	0	0
6	Seq.6	G947_CR122	Rosette.2	90	90	90	90	90
7	Seq.7	G947_CR122	Rosette.2	-45	-45	-45		
8	Seq.8	G947_CR122	Rosette.2	0	0	0	0	0
9	Seq.9	G947_CR122	Rosette.2	-45	-45			
10	Seq.10	G947_CR122	Rosette.2	90	90	90		
11	Seq.11	G947_CR122	Rosette.2	0	0	0		
12	Seq.12	G947_CR122	Rosette.2	45	45			
13	Seq.13	G947_CR122	Rosette.2	0	0			
14	Seq.14	G947_CR122	Rosette.2	90	90	90		
15	Seq.15	G947_CR122	Rosette.2	-45	-45			
16	Seq.16	G947_CR122	Rosette.2	0	0	0	0	0
17	Seq.17	G947_CR122	Rosette.2	-45	-45	-45		
18	Seq.18	G947_CR122	Rosette.2	90	90	90	90	90
19	Seq.19	G947_CR122	Rosette.2	0	0	0	0	0
20	Seq.20	G947_CR122	Rosette.2	-45	-45	-45		
21	Seq.21	G947_CR122	Rosette.2	90	90			
22	Seq.22	G947_CR122	Rosette.2	45	45	45	45	45
23	Seq.23	G947_CR122	Rosette.2	0	0	0	0	0



Maillage du quart de pont et vérification des épaisseurs locales

Déformation du pont pour un déplacement imposé de 10 mm

Graphique du déplacement en fonction de la force appliquée

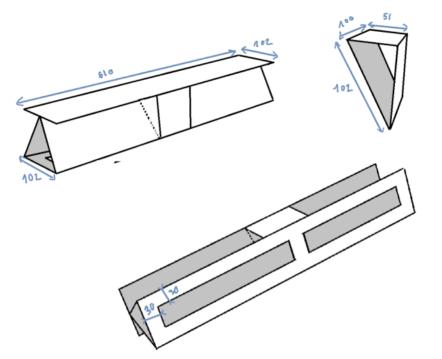
RÉALISATION:

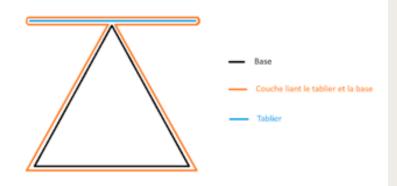
Découpe des plis de carbone

moulage du tablier

Drapage et mise sous vide

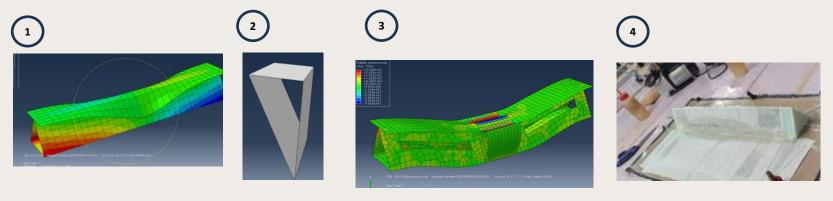
Collage des 2 parties du pont


Pont Toblerone



Présenté par : Arnault LECLERC – John THAI

2. DIMENSIONNEMENT



Orientations des couches :

Couches tablier: 90° 0°/0°/0°/0° 90° (selon x1)

Couche base : 90°/0°/0°/0°/0°/0° (selon x2)

Modélisation base + tablier Modélisation du renfort

Modélisation assemblée

Création de la base en polystyrène et du tablier

Drapage des couches et moulage au contact

Dissolution de la mousse avec de l'acétone

Création du renfort

4. CARACTÉRISTIQUES DU PONT RÉALISÉ

Masse totale réelle = 463 g

Résistance théorique spécifique = 2,748 N/g Résistance théorique = 1272 N

5

Le prix spécial du Jury 2025

Lycée Saint Exupery BLAGNAC

Vainqueur Concours ponts 2025

ISAE - ENSMA

